A lower bound for irredundant Ramsey numbers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Lower Bound for Schur Numbers and Multicolor Ramsey Numbers

For k ≥ 5, we establish new lower bounds on the Schur numbers S(k) and on the k-color Ramsey numbers of K3. For integers m and n, let [m,n] denote the set {i |m ≤ i ≤ n}. A set S of integers is called sum-free if i, j ∈ S implies i + j 6∈ S, where we allow i = j. The Schur function S(k) is defined for all positive integers as the maximum n such that [1, n] can be partitioned into k sum-free set...

متن کامل

New Lower Bound for Multicolor Ramsey Numbers for Even Cycles

For given finite family of graphs G1, G2, . . . , Gk, k ≥ 2, the multicolor Ramsey number R(G1, G2, . . . , Gk) is the smallest integer n such that if we arbitrarily color the edges of the complete graph on n vertices with k colors then there is always a monochromatic copy of Gi colored with i, for some 1 ≤ i ≤ k. We give a lower bound for k−color Ramsey number R(Cm, Cm, . . . , Cm), where m ≥ ...

متن کامل

New Lower Bound Formulas for Multicolored Ramsey Numbers

We give two lower bound formulas for multicolored Ramsey numbers. These formulas improve the bounds for several small multicolored Ramsey numbers.

متن کامل

A bound for multicolor Ramsey numbers

The Ramsey number R(G1; G2; : : : ; Gn) is the smallest integer p such that for any n-edge coloring (E1; E2; : : : ; En) of Kp; Kp[Ei] contains Gi for some i, Gi as a subgraph in Kp[Ei]. Let R(m1; m2; : : : ; mn):=R(Km1 ; Km2 ; : : : ; Kmn); R(m; n):=R(m1; m2; : : : ; mn) if mi=m for i=1; 2; : : : ; n. A formula is obtained for R(G1; G2; : : : ; Gn). c © 2001 Elsevier Science B.V. All rights re...

متن کامل

An Upper Bound for the Ramsey Numbers

The Ramsey number r(H,G) is defined as the minimum N such that for any coloring of the edges of the N -vertex complete graph KN in red and blue, it must contain either a red H or a blue G. In this paper we show that for any graph G without isolated vertices, r(K3, G) ≤ 2q + 1 where G has q edges. In other words, any graph on 2q + 1 vertices with independence number at most 2 contains every (iso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1998

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(97)00055-1